Neoproterozoic glacial origin of the Great Unconformity

C. Brenhin Keller, Jon M. Husson, Ross N. Mitchell, William F. Bottke, Thomas M. Gernon, Patrick Boehnke, Elizabeth A. Bell, Nicholas L. Swanson-Hysell, and Shanan E. Peters

Proceedings of the National Academy of Sciences, 2019: https://doi.org/10.1073/pnas.1804350116

Preprint    PDF    Code and Data    

It has long been observed that the sequence of sedimentary rocks deposited in the past half-billion years often sharply overlies older igneous or metamorphic basement at an erosional surface known as the Great Unconformity. We provide evidence that this unconformity may record rapid erosion during Neoproterozoic “snowball Earth” glaciations. We show that the extent of Phanerozoic sedimentation in shallow continental seas can be accurately reproduced by modeling the accommodation space produced by the proposed glacial erosion, underlining the importance of glaciation as a means for lowering erosional base level. These results provide constraints on the sedimentary and geochemical environment in which the first multicellular animals evolved and diversified in the “Cambrian explosion” following the unconformity.

Abstract:
The Great Unconformity, a profound gap in Earth’s stratigraphic record often evident below the base of the Cambrian system, has remained among the most enigmatic field observations in Earth science for over a century. While long associated directly or indirectly with the occurrence of the earliest complex animal fossils, a conclusive explanation for the formation and global extent of the Great Unconformity has remained elusive. Here we show that the Great Unconformity is associated with a set of large global oxygen and hafnium isotope excursions in magmatic zircon that suggest a late Neoproterozoic crustal erosion and sediment subduction event of unprecedented scale. These excursions, the Great Unconformity, preservational irregularities in the terrestrial bolide impact record, and the first-order pattern of Phanerozoic sedimentation can together be explained by spatially heterogeneous Neoproterozoic glacial erosion totaling a global average of 3–5 vertical kilometers, along with the subsequent thermal and isostatic consequences of this erosion for global continental freeboard.

Suggested citation:
Keller, C.B., Husson, J.M., Mitchell, R.N., Bottke, W.F., Gernon, T.M., Bell, E.A., Swanson-Hysell, N.L., & Peters, S.E. (2019). Neoproterozoic glacial origin of the Great Unconformity. Proceedings of the National Academy of Sciences 116 (4), 1136-1145.