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A stochastic sampling approach to zircon eruption age 
interpretation
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The accessory mineral zircon is widely used to constrain the timing of igneous 
processes such as magma crystallisation or eruption. However, zircon U-Pb ages 
record zircon crystallisation, which is not an instantaneous process. Zircon satu-
ration calculations link zircon crystallisation, temperature, and melt fraction, 
allowing for the estimation of zircon crystallisation distributions as a function of 
time or temperature. Such distributions provide valuable prior information, 
enabling Bayesian estimates of magma eruption time and allowing for compar-
ison of the relative accuracy of common weighted-mean and youngest-zircon age 
interpretations with synthetic datasets. We find that both traditional interpreta-
tions carry a risk of underestimating the uncertainty in eruption age; a low mean 
square of weighted deviates (MSWD) does not guarantee the accuracy of weight-
ed-mean interpretations. In the absence of independent confirmation that crys-

tallisation timescale is short relative to analytical uncertainties, a Bayesian approach frequently provides the most accurate 
results and is least likely to underestimate uncertainty. Since U-Pb zircon studies now routinely resolve geological age 
dispersion due to increasing analytical precision, such considerations are increasingly critical to future progress in resolving 
rates and dates of Earth processes.
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Introduction

Absolute time constraints are critical for establishing temporal 
correlations, testing casual relationships, and quantifying rates 
and durations throughout the Earth sciences (Reiners et al., 
2018). However, the time of radioisotopic closure may not 
directly date the geological events or processes of interest. 
Throughout the first century of geochronology, this potential 
mismatch was frequently a minor concern compared to analyt-
ical uncertainties at the percent level or greater. Recently, 
however, continual improvements in analytical precision and 
accuracy have fundamentally altered longstanding assump-
tions of geochronological age interpretation (Schoene, 2014). 

One chronometer of particular interest is the U-Pb system 
in zircon, thanks to zircon’s ubiquity, resilience, and tendency 
to exclude initial daughter isotopes. Throughout the geologic 
record, zircon provides crucial time constraints for processes 
ranging from evolution and mass extinction to magmatism 
and crustal differentiation (Bowring et al., 1993; Mundil et 
al., 2004; Harrison, 2009; Schoene et al., 2015; Samperton et 
al., 2017). Due to extremely slow parent and daughter isotope 
diffusion (Cherniak, 2003), zircon U-Pb ages record zircon 
crystallisation, if not compromised by metamictisation and 

subsequent Pb loss. However, the crystallisation of a suite of 
zircons in a single igneous rock sample has often been assumed 
to occur rapidly relative to analytical uncertainty, justifying the 
use of statistical approaches such as the weighted mean (e.g., 
Bowring et al., 1993). Moreover, even though zircon saturation 
in magmas is empirically well understood and distinct from 
whole rock crystallisation to the solidus (Boehnke et al., 2013), 
U-Pb zircon ages are traditionally interpreted within uncer-
tainty as reflecting bulk crystallisation or eruption.

While such assumptions may be justified for sufficiently 
ancient or homogeneous samples, crystallisation timescales 
may span 200-700 kyr for magmatic zircons (Lissenberg et al., 
2009; Wotzlaw et al., 2013; Samperton et al., 2017). Conse-
quently, diachronous crystallisation or recrystallisation must 
be considered before calculating a weighted mean of zircon 
ages derived from either in situ (SIMS, LA-ICPMS) or bulk 
(TIMS) analytical techniques. For instance, modern U-Pb 
Chemical Abrasion – Isotope Dilution TIMS (CA-ID-TIMS) 
ages (Mattinson, 2005) on single zircons and zircon frag-
ments may surpass 0.05 % (2σ) accuracy and precision (e.g., 
Schoene et al., 2015; Samperton et al., 2017) – equivalent to 50 
kyr in a 100 Ma sample. Consequently, zircon crystallisation 
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age heterogeneity is increasingly clearly resolved in a wide 
range of magmatic contexts (Wotzlaw et al., 2013; Samperton 
et al., 2017).

Analogous issues appear in other geochronological 
applications ranging from the interpretation of anomalously 
dispersed Ar-Ar ages (e.g., Ellis et al., 2017) to the estima-
tion of sedimentary depositional ages from detrital mineral 
geochronology. We consider here the case study of eruption 
age estimation by CA-ID-TIMS zircon geochronology, where 
analytical precision is high and confounding open system 
behaviour is relatively well controlled. Here, a plethora of 
competing age interpretations have developed in the litera-
ture, falling into three broad categories (e.g., Samperton et al., 
2015) shown in Fig. 1f.

(1) Weighted mean. In cases where the variance of 
the dataset is plausibly consistent with analytical uncertainty 
alone, then some authors may calculate a weighted mean of 
the entire dataset (e.g., Crowley et al., 2007).

(2) Youngest zircon. In contrast, where there is an 
expectation of slow crystallisation relative to analytical uncer-
tainty, or ages are highly dispersed, the youngest single anal-
ysis may be considered a better estimate of eruption age (e.g., 
Wotzlaw et al., 2013).

(3) Low MSWD weighted mean. As an intermediate 
between (1) and (2), one may calculate a weighted mean of 
only the N youngest analyses such that, given the acceptance 
distribution of the MSWD (Wendt and Carl, 1991), the MSWD 
of this subpopulation does not exceed a value deemed accept-
able for N analyses (e.g., Schoene et al., 2015).

The possibility for residual lead loss, even following 
chemical abrasion, substantially complicates each of these 
three approaches, as does the common practice of excluding 
outliers subjectively identified as antecrysts. While interpre-
tation (1) is likely to systematically pre-date the true erup-
tion age, the accuracy of (2) and (3) has not been well tested. 
Moreover, while each interpretation has advantages, it is not 
clear that any of the three yields a statistically robust estimate 
of eruption age.

Model Configuration

In order to address these problems, we investigate the perfor-
mance of common weighted-mean, youngest-zircon, and 
MSWD-test age interpretations, as well as that of an alter-
native likelihood-based Bayesian approach. To this end, we 
consider two dimensionless variables which, together with 
the pre-eruptive zircon crystallisation distribution f(tr), deter-
mine the behaviour of all possible volcanic zircon age inter-
pretations. The first is ∆t/σ, the ratio of the true crystallisation 
timescale ∆t to analytical uncertainty σ, while the second is 
simply N, the number of analyses (Fig. 1).

For instantaneous crystallisation (∆t/σ = 0) with 
Gaussian analytical uncertainty, both the mean and variance 
of an analytical dataset are constant as a function of N, and 
a weighted-mean interpretation is fully justified. However, 
these assumptions fail for non-trivial ∆t, leading to systematic 
bias and potentially major over-estimation of accuracy and 
precision at high N. In contrast, at high ∆t/σ, a youngest-zircon 
estimate is likely to outperform a weighted-mean interpreta-
tion, but may systematically pre- or post-date the true eruption 
age as a function of N.

The effectiveness of each approach will depend on 
f(tr). Fortunately, magmatic zircon crystallisation behaviour 
is understood via empirical saturation equations (Boehnke 
et al., 2013), kinetic models (Watson, 1996), and observation 

of natural systems (e.g., Samperton et al., 2017). In particular, 
we consider the mass of zircon crystallised per unit time or 
temperature per unit mass of magma. This intensive distri-
bution should not be confused with the zircon populations 
considered by Caricchi et al. (2014, 2016), who assume constant 
zircon crystallisation rate per unit magma in the saturation 
interval (i.e. a flat line in Fig. 1a) in their attempt to estimate 
pluton-scale magma fluxes, which we do not consider here.

Figure 1 	 Zircon distributions. (a) Theoretical and empirical 
relative zircon crystallisation distributions f(tr), scaled from initi-
ation to termination of zircon crystallisation. 1: Kinetic model 
of Watson (1996), based on zirconium diffusion constraints. 
2: Thermodynamic model of Keller et al. (2017) using MELTS 
calculations. 3: Observed zircon crystallisation distributions of 
Samperton et al. (2017), shown as a kernel density estimate 
for all autocrystic zircons, truncated at +/- 1 kernel bandwidth. 
(b-d) Representative synthetic zircon age datasets for a variety 
of ∆t/σ at N = 10. (e) Example dataset with N = 100 at ∆t = 1σ; 
note the range is greater than in c despite lower ∆t. (f) Sche-
matic illustration of the three most common volcanic zircon age 
interpretations.

Watson (1996) was the first to consider the form of the 
relative zircon crystallisation distribution as a function of 
temperature, calculating a theoretical distribution on the basis 
of kinetic constraints, characterised by a rapid onset of zircon 
crystallisation followed by a gradual decline. We also consider 
a thermodynamic model integrating major and trace element 
evolution with empirical zircon saturation equations (Boehnke 
et al., 2013; Keller et al., 2017), as well as an observed average 
plutonic zircon distribution (as a function of time) derived 
from CA-ID-TIMS of both single zircons and sub-grain zircon 
fragments (Samperton et al., 2017). All three approaches yield 
similar distributions, (Fig. 1a) – a consistency that extends 
in thermodynamic models to a wide range of whole rock 
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compositions despite greatly varying saturation conditions 
(Fig. S-1). Distributions #1 and #2 assume linear cooling of a 
single magma batch; interaction of multiple magma batches 
and variable cooling rates may distort the distribution, though 
an abrupt truncation at eruption must feature in all volcanic 
zircon age spectra.

Given such a prior expectation of the form of f(tr), we 
may quantitatively test the performance of each common 
age interpretation as a function of N and ∆t/σ by drawing 
N zircons from a crystallisation distribution with arbitrary 
saturation and eruption ages, adding analytical uncertainty 
as a Gaussian random variable with variance σ2 relative to 
the ∆t of the distribution, applying each age interpretation to 
the resulting synthetic dataset, and repeating the process very 
many times for each N and ∆t/σ of interest. However, due to 
the consistency of theoretical and empirical zircon crystalli-
sation distributions, we may also use such a distribution as 
prior information to constrain a likelihood-based Bayesian 
eruption age estimator as follows. Given an observed dataset 
and an accurate f(tr), one may readily calculate the likelihood of 
obtaining the observed dataset from the crystallisation distri-
bution for any given saturation time and eruption time.

While a maximum-likelihood solution might be found 
by systematically varying both the saturation and eruption age 
to produce a two dimensional likelihood surface (e.g., Fig. S-2), 
such an exhaustive search would be inefficient. Instead, we 
follow the Metropolis algorithm to estimate the distribution 
of the eruption age, exploring the likelihood space by moving 
from its current position to a proposed position in the like-
lihood space with probability equal to the ratio of proposed 
and current likelihoods (maximum 1), with each proposal 
deviating from the previous position in only one dimension 
at a time (Gelman et al., 2013). After an initial period of equil-
ibration, the series of accepted proposals takes the form of the 
stationary distribution of a Markov chain (Fig. S-3), which 
provides both the mean and variance of estimated zircon satu-
ration and eruption ages. In order to test the sensitivity of this 
approach to the choice of f(tr), we calculate Bayesian eruption 
age estimates using (1) the MELTS crystallisation distribu-
tion (Fig. 1a) from which the synthetic data were drawn, (2) 
a uniform relative crystallisation distribution (i.e. a flat line 
in Fig. 1a), and (3) a “bootstrapped” distribution, a truncated 
kernel density estimate of each synthetic dataset (Methods).

Results

We explore the parameter space from ∆t/σ of 0.01 to 10 and N 
of 1 to 1000, which includes ranges applicable to both ID-TIMS 
and in situ geochronological techniques. As expected, weighted 
means are accurate at very low ∆t/σ, with the lowest absolute 
error and accurate reported uncertainty at ∆t = 0.01σ (Fig. 
2a,e), but fail at high ∆t/σ, with absolute error not lower than 
∆t/2 and highly inaccurate reported uncertainty (Fig. 2d,h). 
Conversely, the youngest-zircon approach performs poorly at 
∆t = 0.01σ with high absolute error and substantial over-pre-
cision, but comparatively well at ∆t = 10σ. Such interpreta-
tions might remain useful if ∆t/σ were readily determinable 
for natural datasets.

Problems emerge at intermediate levels of age disper-
sion. At ∆t = 1σ, all three traditional interpretations begin to 
fail visibly above N = 3, with high absolute error in young-
est-zircon interpretations, and under-estimated uncertainty 
in both weighted-mean and low-MSWD weighted-mean 
interpretations, for instance by a factor of two at N = 10 (Fig. 
2b,f). At ∆t = 2σ, the problems with weighted-mean interpre-
tations are accentuated, while youngest-zircon interpretations 

coincidentally perform well at moderate N (due to competing 
biases which happen to cancel at N = 5 and ∆t = 2σ), but ulti-
mately still fail at high N due to analytical outliers.

These problems are compounded by the fact that the 
average MSWD at ∆t = 2σ is only 1.26, statistically indistin-
guishable from the near-unity MSWD of a dataset with ∆t = 
0.01 σ until one has characterised more than ∼700 individual 
zircon analyses (Fig. S-4). Even magmatic age heterogeneity 
as high as ∆t = 5σ is not clearly distinguishable from instan-
taneous crystallisation on the basis of MSWD for datasets 
smaller than N ≈ 50, and data sets with ∆t/σ less than two are 
generally indistinguishable from instantaneous crystallisation 
at any practical N (Fig. S-4).

Figure 2 	 Performance of each age interpretation as a function 
of N and ∆t/σ. (a-d) Mean absolute error is the mean absolute 
deviation of the model result from the true value; lower absolute 
errors are better. (e-h) Accuracy of the model uncertainty for 
each age interpretation. A value greater than 1.0 indicates an 
under-estimation of the model uncertainty (i.e. over-precision), 
while a value lower than 1.0 indicates an over-estimation of the 
model uncertainty. MSWD in each panel is the average mean 
square of weighted deviation (also known as the reduced chi 
squared statistic) for that ∆t/σ over all N. Each datum reflects 
the mean of 1200 synthetic dataset tests; standard error of the 
mean is on the order of the line width.

In contrast, the Bayesian eruption age estimate yields 
slightly higher absolute error than the weighted mean at 
∆t = 0.01σ, but otherwise equals or outperforms all other 
approaches across a wide range of N and ∆t/σ, with the closest 
to consistently accurate reported uncertainties. Notably, this 
result is not highly sensitive to the exact choice of f(tr), as 
the Bayesian estimate assuming a uniform f(tr) only diverges 
from the equivalent estimate assuming the true prior at high 
∆t/σ, and only then for N greater than typical in TIMS studies 
(ca. 5-20).
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Figure 3 	 Bayesian eruption age estimates for two well known 
volcanic zircon populations. For age spectra with well-resolved 
dispersion (a), a kernel density estimate may recover a close 
approximation of f(tr), obviating the need to identify and reject 
antecrysts. However, for age spectra where igneous dispersion 
is not well resolved (b), assuming a uniform f(tr) may be more 
parsimonious.

To explore the practical application of Bayesian eruption 
age estimation, we consider ID-TIMS datasets from two well-
known super-eruptions with contrasting zircon age spectra: the 
28 Ma Fish Canyon Tuff, with ~500 kyr of continuous zircon age 
dispersion (Wotzlaw et al., 2013), and the more homogeneous 
767 kyr Bishop Tuff (Crowley et al., 2007). As seen in Figure 3, 
the results are suggestive of a youngest-zircon interpretation 
for the Fish Canyon Tuff and a weighted-mean interpretation 
for the Bishop Tuff – congruous with the dramatic difference in 
dispersion between the two datasets. If all zircons were strictly 
autocrystic, the presence of older outliers would suggest that 
we are incompletely sampling the zircon saturation distribu-
tion, and thus over-estimating the eruption age. Including 
xenocrystic outliers in the Bayesian age interpretation thus 
counter-intuitively leads to under-estimation of the eruption 
age and divergence between Bayesian and weighted-mean 
ages for the Bishop Tuff (e.g., Fig. S-5).

Discussion

Considering the results of Figure 2 in context of the variance 
of the MSWD (Fig. S-4), for most natural datasets we cannot 
rely on sufficiently low ∆t/σ to justify a weighted-mean inter-
pretation even at low MSWD, nor in general can we justify 
a youngest-zircon interpretation except at low N and high 
MSWD. In the absence of reliable external evidence for 
instantaneous crystallisation, the greater precision obtained 
by a weighted-mean approach is illusory. A likelihood-based 
Bayesian estimate appears to perform competitively under all 
scenarios, and is the least likely to underestimate the reported 
uncertainty.

The problem of minimum age estimation may also 
be considered from the perspective of mixture modelling, 
which can be approached either numerically or analytically 
(Galbraith, 2005; Jasra et al., 2006), and is also likely to outper-
form the “traditional” interpretations. In this context, the main 
advantage of our approach compared to an analytical equiv-
alent is merely the ability to specify numerically an arbitrary 
f(tr) derived from a physics-based model.

While our approach may decrease the impact of subjec-
tive interpretational decisions, it does not eliminate them 
entirely: we must still choose a method by which to estimate 
f(tr). This relative crystallisation distribution is well-deter-
mined for a single magma batch (Fig. 1a #1-2), and may be 

empirically estimated (“bootstrapped”) by a kernel density 
estimate in datasets with highly- resolved dispersion (Fig. 
1a #3). Even when data are inverted with an f(tr) that does 
not match the distribution from which they were drawn, a 
Bayesian approach still significantly outperforms traditional 
interpretations (Fig. 2, Figs. S-6, S-7). Nonetheless, distortions 
may occur, particularly in datasets featuring extreme outliers, 
or if our critical assumption that f(tr) falls to zero at tr = 0 (i.e. 
no crystallisation after eruption) is violated by contamination, 
unrecognised lead loss, or other open system behaviour.

Finally, while the similarity in form between the 
observed and theoretical relative crystallisation distributions 
f(tr) (Fig. 1a) suggests that single zircon and zircon fragment 
TIMS ages are sampling (and not simply integrating) the true 
f(tr), further systematic analysis is required. The ideal U-Pb 
zircon technique to resolve such geochronological problems 
must provide high analytical accuracy, high spatial resolution, 
and the ability to mitigate lead loss. Consequently, we recom-
mend sub-grain microsampling or microfracturing wherever 
possible in TIMS analyses (e.g., Samperton et al., 2017), and 
emphasise further study of the effects and detection of lead 
loss for all U-Pb techniques.
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Supplementary Methods

Eruption age estimation
Given a dataset of mass-spectrometrically determined closed-system mineral crystallisation ages from a given volcanic unit, we
wish to determine the time of eruption (or deposition) subject the one-sided a priori constraint that no such ages may postdate
eruption. We represent this prior knowledge in the form of a crystallisation distribution that is sharply truncated at eruption. In the
first (and simplest) case of a single magma batch, the remarkable convergence of kinetic (Watson, 1996), thermodynamic (MELTS +
zircon saturation; Keller  et al., 2017), and empirical (Samperton  et al., 2015) results seen in Figure 1a provides a relative zircon
crystallisation density function fxtal(tr), where tr is relative time, scaled from zircon saturation (tsat) to eruptive truncation (terupt), that
is:

t r = (t−t erupt )/∆t       (1)

where

∆t = t sat−t erupt     (2)

When thus scaled, the form of this zircon density function remains consistent across a wide range of rock types, as seen in Fig. S-1.
More  generally,  for  any system where  we can independently  determine  fxtal(tr),  we may then  define  a  mineral  crystallisation
distribution Dxtal(tsat, terupt) with a normalised probability density function pxtal(t | tsat, terupt) given by:

P xtal (t | t sat , t erupt ) = {
0 t<teruption
0 t>t saturation

f xtal (t r )/∆t t erupt≤t≤t sat
}             (3)

We then approach the estimation of  terupt as a Bayesian parameter estimation problem. Central to this approach is the ability to
calculate the likelihood that an observed zircon age was drawn from a given crystallisation distribution, accounting for analytical
uncertainty. For a single zircon  i of age  xi and Gaussian analytical uncertainty with variance σ2, this likelihood  L is given by an
integral over all time:

L (xi|t sat ,terupt ) = ∫
−∞

∞
1

√2 πσ 2
exp(

−(x i−t )
2

2σ2 )∗p xtal (t|t sat ,terupt )dt         (4)

This convolution integral is calculated numerically given a scaled and normalised vector for fxtal(tr) which discretises fxtal(tr) between
tsat and terupt. We then calculate the log likelihood of a given proposal for a dataset of Nz zircons as:
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LL (t erupt ,t sat ) = ∑
i=1

N z

log (L (x i|t sat ,terupt ) )                   (5)

Given this  log likelihood,  terupt may  now be estimated  by Markov Chain  Monte  Carlo  methods.  We implement  the  standard
Metropolis algorithm (Metropolis et al., 1953) with a symmetric Gaussian proposal distribution for both terupt and tsat, as follows:

1. Begin with initial proposals terupt = min(tobs) and tsat = max(tobs) where tobs is the array of observed mineral ages

2. Draw one value from a continuous uniform distribution u  ∼ unif(0, 1)

3. Adjust either terupt or tsat with a symmetric Gaussian proposal

t erupt prop = {
t erupt+X u≤0.5

t erupt u>0.5 }                      (6)

t sat prop = {
t sat+X x≤0 .5

t sat u>0.5 }                   (7)

where the random variable X  ∼ �(0, σ2
prop).

4. If t erupt prop>t satprop  then  reverse the two proposals

5. Calculate the log likelihood of the new proposal

LLprop=LL (t sat prop ,terupt prop)              (8)

1. Accept the proposal with probability Paccept = min(exp(LLprop - LLlast), 1), where LLlast is the log likelihood of the last accepted
proposal.  In the present implementation,  any number representable as a 64-bit  floating point number is  permitted as
potential value for tsat and terupt, providing an exceptionally weak prior which reduces to a constant and thus is eliminated
from the acceptance probability function. This prior might reasonably be tightened to  e.g.,  unif(0, 4.567 Ga), though the
more valuable prior information is contained in pxtal.

2. Repeat steps 2-6 at least 104 times, recording a running list of all accepted proposals.

In this way our Markov chain explores a likelihood space such as that shown in Fig. S-2. If initial proposals for tsat and terupt are far
from the true value, we may observe an initial period of optimisation known as burn-in, characterised by systematic variation in tsat

and terupt accompanied by increasing log likelihood. However, initial proposals given by the oldest observed zircon age for tsat and
the youngest observed zircon age for terupt are sufficiently accurate that burn-in is often observed to be negligible (Fig. S-3). After
burn-in, our posterior distributions for tsat and terupt are given by the stationary distribution of accepted proposals; for instance, our
estimates for the mean and standard deviation of tsat are given by the mean and standard deviation of the stationary distribution of
accepted proposals of tsat.

Testing and validation
In order to evaluate the efficacy of the above Bayesian parameter estimation method (with various crystallisation distributions)
relative to traditional weighted mean, youngest zircon, and low-N weighted mean interpretations, we conducted a range of tests
with synthetic datasets drawn from the single-batch crystallisation distribution. In particular, we explored synthetic datasets of
between 1 and 1024 zircons with ∆t/σ from 0.01 to 10. Each synthetic dataset tsyn was drawn from the MELTS-derived crystallisation
distribution scaled over a crystallisation timescale ∆t between tsat syn and terupt syn, prior to the addition of analytical uncertainty σ as a
Gaussian random variable.

tsyn = txtal + terror                (9) 
where each element i of txtal and terror is distributed as

t xtali ~Dxtal (t sat syn ,terupt syn )
t errori ~� (0 ,σ2 )

for each of the N synthetic analyses in tsyn.

Using  a  pseudorandom  number  generators  to  draw  independent  and  identically  distributed  samples  from  �(0,σ2)  and
Dxtal(tsat syn,  terupt  syn), we are able to generate independent synthetic datasets at every N and ∆t/σ of interest. While computationally
intensive,  the  problem  of  repeatedly  testing  the  weighted-mean,  youngest-zircon  and  Bayesian  age  interpretations  with
independent synthetic datasets is inherently highly parallel. Consequently, we are able to use a simple and scalable code written in
C and parallelized  with  MPI to  test  each interpretation  (weighted-mean,  Bayesian,  etc.)  estimation  on 1200 independent  and
identically distributed synthetic datasets for every combination of

 ∆t /σ∈0 .01,1,2,10
with 

N∈1,2,3,4,6,8,11,16,23,32,45,64,91,128,181,256,362,512,724,1024
using 320 cores of a Linux cluster at the Princeton Institute for Computational Science and Engineering.
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In initial tests, we observed a tendency of the Markov chain to diverge at low Nz. This is perhaps not surprising in the absence of
any other imposed prior constraints: to give a concrete example, a single detrital zircon age provides virtually no constraint on the
depositional age of a given stratum; the two may differ by hundreds of Myr. The same is not generally true, however, for volcanic
zircons in an ash bed.  To avoid this  problem,  we introduce a more informative  Bayesian prior  on ( tsat,  terupt)  to  slightly  favor
proposals close to the weighted mean for underdispersed low-N datasets and proposals close to the youngest and oldest observed
zircon for overdispersed low-N datasets, adjusting equation (8) as follows:

LLprop= LL (t sat prop ,terupt prop ) +
Z r∗Awmean + (1−Zr )∗Aobs
log (1+N z )

                             (10)

 given

Awmean=2∗log(
|tmin prop−μw| + σw

σw
∗

|tmaxprop−μw| + σw
σw ) (11)

Awmean=2∗log(
|tmin prop−t yz| + σ yz

σ yz
∗

|tmaxprop−toz| + σ oz
σoz ) (12)

where μw and σw are the value and uncertainty of the weighted mean of the observed(or synthetic) dataset,  tyz and σyz are the age
and analytical uncertainty of the youngest observed (or synthetic) zircon, toz and σoz are the age and analytical uncertainty of the
oldest observed (or synthetic) zircon, and Zr, after Wendt and Carl (1991):

Zr=exp ( (N /2−1 ) ∗ log (MSWD ) − N z /2∗(MSWD−1 ) )   (13)

which ranges from 0 to 1, is the relative likelihood of the MSWD of the observed dataset occurring by chance (relative to MSWD =
1) for dataset of Nz observations.

Results of these synthetic dataset tests are shown in Figure 2 and tabulated in the .log files in the synthetic dataset test directory.
The performance of each interpretational approach is quantified in terms of (1) the mean absolute deviation of the model result
from the true answer, in units of analytical uncertainty σ Ma and (2) the mean absolute error of a given interpretation divided by
the mean absolute error expected based the reported uncertainty of that interpretation. These units are further explained visually in
Fig. S-8.

As with  all  other  computational  source  code,  the  resulting  program is  freely  available  at  https://github.com/brenhinkeller/
BayeZirChron.c, along with ASCII files containing the vector  f(tr)  used to draw from  Dxtal(tsat  syn,  tsat  syn) and plotted in Figure 1
(VolcanicZirconDistribution.tsv) and all other distributions used in the Bayesian eruption age estimation approach.

Empirical crystallisation distributions
Notably,  the MELTS zircon crystallisation distribution is  fully accurate only for  a single  magma batch undergoing monotonic
cooling with roughly constant cooling rate; this is not the general case. For highly-dispersed datasets where we cannot assume such
magma conditions,  we have tested a hierarchical approach in which the form of the relative crystallisation distribution  f(tr) is
estimated from the data, leading to what may be considered a type of Empirical Bayes approach: first estimate  fxtal(tr), then (as
usual) use that fxtal(tr) to construct pxtal(t | tsat, terupt) and estimate the distribution of tsat and terupt. In other words, each element of the
array  fxtal(tr) is analagous to a hyperparameter which influences the distribution of the parameters tsat and terupt.

Such  an  approach,  if  incautiously  applied,  may  carry  with  it  a  significant  risk  of  error.  Consequently,  it  is  critical  that  the
performance  of  our  implementation  of  this  hierarchical  approach is  thoroughly  evaluated,  particularly  in  comparison  to  less
informative alternatives such as assuming a uniform crystallisation distribution.  In order to subject this  approach to the same
synthetic dataset tests used for the other five interpretation approaches, we have reimplemented our parallel synthetic dataset
generation and Bayesian eruption age estimation codes in Julia, which allows for scalable parallel calculations in a higher-level
programming environment.

In this approach, our key point of prior knowledge is that eruption should cause an abrupt cutoff in the crystallisation distribution.
Consequently,  our implementation must reliably produce an estimate of  fxtal(tr) that reproduces any broad fluctuations in xtal r
relative crystallisation rate while maintaining an abrupt cutoff at  tr = 0. We accomplish this through a truncated kernel density
estimate of the scaled crystallisation times tr obs where

t robs=
tobs − min (tobs )

max (tobs) − min (tobs )
              (14) 

To produce a kernel density estimate of fxtal(tr) from tr obs, we use the KernelDensity.jl package with a Gaussian kernel and bandwidth
determined by Silverman’s  rule.  The resulting kernel  density  estimate  is  truncated at  tr = −0.05.  If  fewer than 5 analyses  are
available for a given sample, we default to the  N = 1 case, which yields a truncated Normal distribution due to the choice of a
Gaussian kernel.
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As shown in TestBootstrappedAccuracyParallel.jl, we again draw synthetic datasets from the MELTS volcanic zircon distribution,
for the same range of N and ∆t/σ as above, in parallel on 320 cores of a Linux cluster. For each independent synthetic dataset, fxtal(tr)
is  then  estimated  by  KDE  as  described  above,  and  the  Bayesian  eruption  age  code  run  using  this  relative  crystallisation
distribution. The results, included in Figure 2, allow us to compare the accuracy of this “bootstrapped” estimate of terupt both (1) in
absolute terms, (2) relative to traditional zircon age interpretations, and (3) relative to equivalent Bayesian estimates using either (a)
the MELTS prior from which the synthetic data were actually drawn, or (b) assuming a uniform crystallisation distribution. As seen
in Figure 1, the “bootstrapped” crystallisation distribution does not fall to overfitting within the explored parameter space, and
significantly outperforms the assumption of a uniform crystallisation distribution at high ∆t/σ.

                                                             Geochem. Persp. Let. (2018) 8, 31-35 | doi: 10.7185/geochemlet.1826                            SI-4

https://github.com/brenhinkeller/BayeZirChron.c/blob/master/julia/TestBootstrappedAccuracyParallel.jl


Supplementary Figures

Figure S-1 Relative  zircon  crystallisation  distributions.  (a) Zircon  crystallisation  distributions  derived  from  MELTS  major  element  calculations,  trace  Zr
partitioning,  and the zircon saturation model  of  Boehnke  et  al.  (2013)  for  a  wide range  of  whole-rock compositions.  (b) Empirical  “bootstrapped”  zircon
crystallisation distributions, kernel density estimates of published datasets from Samperton et al. (2015), Barboni et al. (2015), and Wotzlaw et al. (2013). The
simple  in situ crystallisation distribution of  (a) seen in the Bergell case becomes increasingly distorted in the Elba and Fish Canyon datasets,  which may be
attributed to a combination of (1) potentially complicated thermal histories, (2) truncation of the long tail of plutonic crystallisation by eruption (Fish Canyon) or
hypabyssal porphyry intrusion (Elba), or (3) a lack of sub-grain microsampling, which has been conducted at scale only in the Bergell dataset.

Figure S-2 Likelihood space for dataset with 100 zircons and ∆t = 10σ. Warmer colors denote greater likelihood, with the highest likelihood observed near the
true answer (denoted by black +).
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Figure S-3 Saturation and eruption ages of the first 105 steps of of the Markov chain for an MCMC inversion of a synthetic dataset with 100 zircons and ∆t =
10σ. Due to the simple monotonic nature of the likelihood function for such an age inversion, and the availability of accurate initial guesses (i.e., the oldest and
youngest zircon), the distribution is immediately stationary. A weighted mean age must always plot on the line of instantaneous crystallisation.

Figure S-4 The uncertainty  of the MSWD for analytical  datasets  as a  function of  N for a  range of  ∆t/σ. The case of  ∆t = 5σ is  not distinguishable  from
instantaneous crystallisation with N less than 50, and ∆t = 2σ is not distinguishable with N less than 700.∼ ∼
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Figure S-5 Bayesian eruption age estimates for alternate Bishop Tuff and Fish Canyon Tuff datasets: (a) arbitrarily excluding all zircon ages older than 28.3 Ma in
the Fish Canyon dataset, and (b) including two xenocrysts (one off-scale) in the Bishop Tuff dataset. Compared to a uniform distribution, empirical estimates and
MELTS calculations provide more informative relative crystallisation distributions – yielding more accurate results in an ideal system, but with increased risk of
overfitting. If all zircons were strictly autocrystic, the presence of outliers would suggest that we are incompletely sampling the zircon saturation distribution, and
thus overestimating the eruption age. Including xenocrystic outliers in the Bayesian age interpretation thus leads to underestimation of the eruption age and
divergence between Bayesian and weighted mean ages for the Bishop Tuff. Consequently, methods for quantitatively identifying xenocrystic grains unrelated to
in situ crystallisation of the erupted magma are of particular utility.
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Figure S-6 A comparison of the absolute error of each age interpretation for synthetic data drawn from different relative crystallisation distributions  f(tr).  
(a-d) MELTS crystallisation distribution as in Figure 2.  (e-h) Uniform crystallisation distribution.  (i-l) Truncated Normal crystallisation distribution. Assuming a
uniform crystallisation distribution provides the most consistently accurate results at low ∆t/σ, while the “bootstrapped” distribution interpretation (base on a
truncated kernel density estimate for each synthetic dataset) consistently performs well at high ∆t/σ. As in Figure 2, mean absolute error is the mean absolute
deviation of the model result from the true value, reported in units of analytical uncertainty, σ; lower absolute errors are better. Each datum reflects the mean of
1200 synthetic dataset tests; standard error of the mean is on the order of the line width.
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Figure S-7 A comparison of the relative error of each age interpretation for synthetic data drawn from different relative crystallisation distributions  f(tr).  
(a-d) MELTS crystallisation distribution as in Figure 2.  (e-h) Uniform crystallisation distribution.  (i-l) Truncated Normal crystallisation distribution. Assuming a
uniform crystallisation distribution provides the most consistently accurate results at low ∆t/σ, while the “bootstrapped” distribution interpretation (based on a
truncated kernel density estimate for each synthetic dataset) consistently performs well at high ∆t/σ. As in Figure 2, “error / expected error” quantifies the
accuracy  of  the  model  uncertainty  for  each  age  interpretation.  A  value  greater  than  one  indicates  an  underestimation  of  the  model  uncertainty  ( i.e.
overprecision), while a value lower than one indicates an overestimation of the model uncertainty. Each datum reflects the mean of 1200 synthetic dataset tests;
standard error of the mean is on the order of the line width.
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Figure S-8 Explanation of some of the terms used in Fig. 2. Panel (a) Illustrates the calculation of absolute error (c.f. Fig. 2a-d) for an example dataset with ∆t =
4σ and average analytical error σ = 0.5 Ma. For a weighted mean age of 101.1 Ma and a true eruption age of 100.0 Ma, we find an absolute error of 1.1 Ma, equal
to 2.2 σ. For the same example dataset, the ratio of absolute error to expected error (c.f. Fig. 2e-h) is calculated in  (b): absolute error is unchanged, while
expected error is equal to the mean absolute deviation (MAD) of the resulting weighted mean. Mean absolute deviation is further explained in (c) and (d). The
familiar probability density function (PDF) of a standard normal random variable X with mean of 0 and variance 1 is illustrated in panel (c). The distribution is
symmetric about the mean. The PDF of a corresponding half- normal random variable Y = |X| is shown in (d); the mean of Y is the mean absolute deviation of X.
In general, the mean absolute deviation of any Gaussian random variable is equal to 0.798 times the standard deviation.
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